Learning generative models for protein fold families.
نویسندگان
چکیده
We introduce a new approach to learning statistical models from multiple sequence alignments (MSA) of proteins. Our method, called GREMLIN (Generative REgularized ModeLs of proteINs), learns an undirected probabilistic graphical model of the amino acid composition within the MSA. The resulting model encodes both the position-specific conservation statistics and the correlated mutation statistics between sequential and long-range pairs of residues. Existing techniques for learning graphical models from MSA either make strong, and often inappropriate assumptions about the conditional independencies within the MSA (e.g., Hidden Markov Models), or else use suboptimal algorithms to learn the parameters of the model. In contrast, GREMLIN makes no a priori assumptions about the conditional independencies within the MSA. We formulate and solve a convex optimization problem, thus guaranteeing that we find a globally optimal model at convergence. The resulting model is also generative, allowing for the design of new protein sequences that have the same statistical properties as those in the MSA. We perform a detailed analysis of covariation statistics on the extensively studied WW and PDZ domains and show that our method out-performs an existing algorithm for learning undirected probabilistic graphical models from MSA. We then apply our approach to 71 additional families from the PFAM database and demonstrate that the resulting models significantly out-perform Hidden Markov Models in terms of predictive accuracy.
منابع مشابه
Structure Learning for Generative Models of Protein Fold Families
Statistical models of the amino acid composition of the proteins within a fold family are widely used in science and engineering. Existing techniques for learning probabilistic graphical models from multiple sequence alignments either make strong assumptions about the conditional independencies within the model (e.g., HMMs), or else use sub-optimal algorithms to learn the structure and paramete...
متن کاملRepresenting and Reasoning about Protein Families Using Generative and Discriminative Methods
This work addresses the issues of data representation and incorporation of domain knowledge into the design of learning systems for reasoning about protein families. Given the limited expressive capacity of a particular method, a mixture of protein annotation and fold recognition experts, each implementing a different underlying representation, should provide a robust method for assigning seque...
متن کاملLearning Sequence Determinants of Protein: Protein Interaction Specificity with Sparse Graphical Models
In studying the strength and specificity of interaction between members of two protein families, key questions center on which pairs of possible partners actually interact, how well they interact, and why they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers t...
متن کاملFeature Learning and Graphical Models for Protein Sequences
Evolutionarily related proteins often share similar sequences and structures and are grouped together into entities called protein families. The sequences in a protein family can have complex amino acid distributions encoding evolutionary relationships, physical constraints and functional attributes. Additionally, protein families can contain large numbers of sequences (deep) as well as large n...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 79 4 شماره
صفحات -
تاریخ انتشار 2011